Symmetric, Positive Semidefinite Polynomials Which
نویسندگان
چکیده
This paper presents a construction for symmetric, non-negative polynomials, which are not sums of squares. It explicitly generalizes the Motzkin polynomial and the Robinson polynomials to families of non-negative polynomials, which are not sums of squares. The degrees of the resulting polynomials can be chosen in advance. 2000 Mathematics Subject Classification: 12Y05, 20C30, 12D10, 26C10, 12E10
منابع مشابه
Matrix Representations for Positive Noncommutative Polynomials
In real semialgebraic geometry it is common to represent a polynomial q which is positive on a region R as a weighted sum of squares. Serious obstructions arise when q is not strictly positive on the region R. Here we are concerned with noncommutative polynomials and obtaining a representation for them which is valid even when strict positivity fails. Specifically, we treat a ”symmetric” polyno...
متن کاملExponential lower bounds on spectrahedral representations of hyperbolicity cones
The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree d in n variables contains (n/d) pairwise distant cones in the Hausdorff metric, and therefore that any semidefinite representation of such polynomials must have dimension at lea...
متن کاملPure States, Positive Matrix Polynomials and Sums of Hermitian Squares
Let M be an archimedean quadratic module of real t× t matrix polynomials in n variables, and let S ⊆ R be the set of all points where each element of M is positive semidefinite. Our key finding is a natural bijection between the set of pure states of M and S × P(R). This leads us to conceptual proofs of positivity certificates for matrix polynomials, including the recent seminal result of Hol a...
متن کاملExtension of the semidefinite characterization of sum of squares functional systems to algebraic structures
We extend Nesterov’s semidefinite programming (SDP) characterization of the cone of functions that can be expressed as sums of squares (SOS) of functions in finite dimensional linear functional spaces. Our extension is to algebraic systems that are endowed with a binary operation which map two elements of a finite dimensional vector space to another vector space; the binary operation must follo...
متن کاملPolynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones
We give explicit polynomial-sized (in n and k) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree k in n variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007